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Abstract
The results of a genetic-algorithms search for structures of titanium clusters
with up to 100 atoms are presented. An empirical pair potential has been used
in describing the interatomic interactions during the genetic-algorithms search.
The resulting global-minimum structures have been used as starting geometries
of geometry optimizations using a density-functional tight-binding method.
Structural, energetic, and electronic properties are analysed and compared.
Special attention is paid to the size dependence of the properties, including
point groups, radial atomic distributions, bond lengths, moments of inertia,
stability, Mulliken populations and frontier orbitals. Similarity functions are
defined to facilitate the analysis of the growth of the clusters. It turned out that
the empirical potential favours highly symmetric geometries, that exhibit small
distortions upon relaxation using the electronic-structure method. Some larger,
particularly stable clusters are fragments of the hcp bulk structure but an overall
transition to bulk structure cannot be seen below 100 atoms.

1. Introduction

Metal-containing clusters are intensively investigated either as free clusters or deposited or
grown on surfaces (see, e.g., [1]). Thereby, the size dependence of the properties gives access
to information about the growth processes taking place when clusters are formed. The main
questions in this context are as follows. Is there a particular cluster size at which a transition to
bulk structures takes place? Are there highly symmetric clusters and do they have any specific
properties? Which are the corresponding magic numbers and why do these magic clusters
exist?

To throw more light on some of these questions we have investigated a series of titanium
clusters. Titanium is an early transition-metal element. The main interest so far has been paid
to the later transition metals such as Ni, Cu, Au, Ag, Pt, and Pd. However, since the 1990s
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Tin clusters have come more into the focus of research. A few theoretical investigations have
been presented on single, highly symmetric clusters, e.g., the icosahedral Ti13 and Ti55 clusters,
and on clusters with n < 20 employing density-functional-based methods [2–6]. The latter
interest, however, may be more a limitation regarding computational effort and, moreover, due
to the problem of choosing starting structures for larger clusters for which highly symmetric
structures can not necessarily be assumed. These studies concentrate mainly on the structural
and electronic properties, but present in addition some information about the size dependence
of these properties. However, the size range that is covered is rather small so that the present
study is—to our knowledge—the first theoretical investigation of size-dependent properties
over a wide range of Tin clusters with up to n = 100 atoms that is continuous over this size
range.

For the sake of completeness we add that there has been a number of theoretical and
experimental studies dealing with the Ti2 dimer, e.g., among others the work of Bauschlicher
et al [7]. In addition, there exists a limited number of publications reporting experimental
results for series of titanium clusters. These cover a much larger range of mass-selected cluster
sizes with up to more than 100 atoms and present exclusively results deduced from photo-
electron spectroscopy [5, 8, 9] except for a study by Sakurai and co-workers [10] who presented
time-of-flight mass spectra of clusters with up to 30 atoms. Although these studies give much
insight into the optical and other properties of the studied clusters, the overlap between theory
and experiment is still very low due to limitations on both sides. We hope that with this study
we may contribute to the understanding of nanostructured materials and increase the overlap
between experimental and theoretical approaches.

For theoretical calculations of clusters the question how to choose a starting geometry
becomes increasingly important with increasing cluster size. Whereas it is possible to guess
initial geometries for clusters with up to, say, ten atoms or those whose numbers of atoms
suggest that there might be a highly symmetric structural isomer, it is nearly impossible to use
human intuition to generate reasonable starting structures for larger clusters. One common
approach to deal with this problem is to use the concept of simulated annealing to find the
global total-energy minimum structure of the system of interest. Alternatively, so-called genetic
algorithms [11, 12] are often used. This is also the method that has been applied to obtain the
results of this study.

Nevertheless, even when using such intelligent methods for unbiased structure
optimizations, additional problems occur for systems with n, the number of atoms, being just
some few tens of atoms. For these, the combination of an essentially exponentially growing
number of local total-energy minima with n and of computational needs for the calculation
of the total energy of just a single structure that grows with n to some power larger than 2
makes it impossible to use highly accurate total-energy methods for larger ranges of cluster
sizes without imposing serious constraints on the sizes and/or structures that shall be studied.
Alternatively, one may apply simple empirical approximations to the total energy, which is
the most commonly used approach when studying whole series of clusters with more than,
say, 20 atoms. However, almost exclusively all such empirical potentials depend on only the
interatomic distances, i.e., Etot = Etot({ri j}) (with ri j being the distance between the i th and
the j th atom), whereby directional interactions (through electronic bonds) are excluded.

Although such approaches may provide useful information for the development of the
properties of the clusters as a function of size, it is unclear to what extent the neglect of
electronic degrees of freedom affects the conclusions. It is the purpose of the present study
to address this issue. Thus, by first using one method that excludes the electronic degrees
of freedom in optimizing the structures unbiasedly and, subsequently, using another method
that includes electronic orbitals in locally relaxing the structures, we obtain estimates on the
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importance of directional interactions through electronic orbitals. Moreover, the combined
study will provide a much more detailed insight into the properties of the clusters at hand, i.e.,
Tin clusters, than would have been the case for each study, separately.

2. Computational methods

The study presented in this paper has been undertaken using two computational methods,
separately. We performed genetic-algorithms calculations for each value of n in Tin (n � 100)
and, afterwards, the resulting lowest-energy structures were taken as the starting geometries for
calculations with a density-functional tight-binding method. We will describe both methods
only briefly below.

Genetic algorithms (GAs) are based on the principles of natural evolution [11, 12].
They have been found to provide an efficient computational tool for global geometry
optimizations [13–16]. However, genetic algorithms in combination with electronic-structure
calculations are computationally heavy and, therefore, we have, in one set of calculations, used
an empirical pair potential for the description of the interatomic interactions.

Our GA has originally been developed to deal with two-component clusters [17, 18]. It
is able to use two different types of so-called mating procedures to create new clusters which
both have been used during the calculations with equal weight.

Generally, in each generation a population of N independent clusters is kept. N should be
chosen due to computational possibilities. A large N increases the accuracy of the search on the
potential energy surface but also increases the computational time. In our case we performed
the calculations using N = 10. For each of the N clusters a starting geometry of n atoms is
chosen randomly with only minor constraints, i.e., the atoms are forced to lie within a specified
volume to ensure interactions between them and no two atoms are allowed to be closer than a
certain minimum distance.

After this initial step, the N clusters are relaxed to their nearest total-energy minimum
using the pair potential described below. These relaxed clusters are called ‘parents’.

The third step is the mating procedure. We used both a single-parent and a two-parent
mating procedure. In the first—similar to Jackson’s single-parent evolution approach [19]—
each of the N clusters is cut randomly (and separately) into three parts. Thereby, the planes
of the two cuts are parallel. The two outer parts are then rigidly interchanged. The two-parent
mating procedure cuts two cluster structures into parts of m and (n−m) atoms and interchanges
the appropriate parts.

After either of these procedures, N newly generated clusters (called ‘children’) are relaxed
to their closest total-energy minimum. Out of the pool of N parent clusters and N child clusters
the N clusters with the lowest total energies are selected to build up the parent pool of the next
generation.

This procedure is repeated for several hundred generations until the lowest total energy is
unchanged for 100 generations. To increase the certainty of having found the global-minimum
structure several independent runs were performed so that between 104 and 105 structures have
been generated and relaxed for each cluster size. Nevertheless, there is no absolute certainty—
especially for larger clusters—that the resulting cluster is the one of the global total-energy
minimum, but, hopefully, it is a very good approximation to it.

For the calculation of the interatomic interactions we used an empirical pair potential given
by Cleri and Rosato [20] whereby the cohesive energy of the system is written as

Ec = A
n∑

j>i

e
−p

(
ri j
r0

−1
)

−
n∑

i

√√√√
n∑

j �=i

ξ 2e
−2q

(
ri j
r0

−1
)

. (1)
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Here, ri j is the interatomic distance between the atoms i and j , and r0 is the nearest-neighbour
distance in the bulk crystal lattice. The repulsive part Ei

R, which is a sum of Born–Mayer
ion–ion repulsions, contains, furthermore, the parameter p that is related to the compressibility
of the bulk metal. The band-energy term Ei

B contains an effective hopping integral ξ and the
parameter q that describes the dependence on the relative interatomic distance.

The parameters have been determined through fitting to experimental bulk values by Cleri
and Rosato [20] and for the sake of completeness we include their values for titanium here:
A = 0.1519 eV, ξ = 1.8112 eV, p = 8.620, q = 2.390, and β = 1.5874. The latter is used to

calculate r0 = a0 ·
√

1
3 + β2

4 with a0 = 2.9508 Å.3

In our second set of calculations, performed with the purpose of getting information on the
importance of electronic degrees of freedom, the global-minimum structures described by the
empirical potential were subsequently refined using a parameterized density-functional tight-
binding (DFTB) method [21–23].

This method is based on the density-functional theory of Hohenberg and Kohn [24] in the
formulation of Kohn and Sham [25]. The total energy of the system of interest relative to the
isolated atoms is written as

ET =
∑

i

εi −
∑

jk

ε jk + 1
2

∑

k �=l

Ukl(|Rk − Rl |), (2)

where εi is the Kohn–Sham eigenvalue of the i th orbital of the system and ε jk is the energy of
the j th orbital of the isolated atom k. Ukl is a pair potential between the atoms k and l.

The single-particle Kohn–Sham eigenfunctions ψi (r) are expanded in a set of localized
atom-centred basis functions ϕm(r). These functions are determined by self-consistent density-
functional calculations on the isolated atoms employing a large set of Slater-type basis
functions.

The effective one-electron potential in the Kohn–Sham Hamiltonian is approximated as
a superposition of the atomic potentials of the corresponding neutral atoms. Moreover, only
two-centre integrals are calculated to set up the Hamilton matrix. Finally, all electrons except
for the 4s and 3d electrons were treated within a frozen-core approximation.

3. Results

First, we will investigate the energetic stability of the Cleri–Rosato (CR) and the DFTB
clusters. Therefore, we show in figure 1 the stability function which is defined as Estab(n) =
En−1 + En+1 − 2En with Ek being the total energy of the k-atomic cluster.

The stability function of the CR clusters shows maxima at n = 13, 19, 38, 46, 49, 55 and
further maxima above n = 70 in fairly regular intervals. After applying the DFTB scheme and
re-optimizing the clusters with the electronic-structure method the stability function changes
significantly. The function shows a few significant peaks. The most stable clusters are now
those with n = 19, 38, 48, 67, 70, 73, whereby the three latter are the most prominent peaks.
The neighbouring clusters (n = 66, 68, 69, 74) are particularly unstable.

Some of these magic numbers arise from geometrical shell closings and correspond to
highly symmetric structures such as, e.g., Ti13 (icosahedron), Ti19 (double-icosahedron), Ti38

(truncated octahedron), and Ti55 (Mackay icosahedron). These clusters are most stable within
the CR series. However, if electronic effects are taken into account through DFTB, other
clusters arise as stable structures, e.g., Ti67. A significant change happens to Ti13 and Ti55

that show only small peaks in the DFTB stability function.

3 The parameter a0 has been corrected according to Kittel [28], since it has been misprinted in [20].
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Figure 1. Stability functions of the titanium clusters described by (a) the CR and (b) the DFTB
potential as functions of cluster size. The stability function is defined as Estab(n) = En−1 + En+1 −
2En with Ek being the total energy of the Tik cluster. Note the different scaling of the y axes.

The stability of a series of titanium clusters with up to around 30 atoms has been
investigated experimentally by Sakurai and co-workers [10] using time-of-flight mass
spectrometry. The authors found the Tin clusters with n = 7, 13, 15, 19, 25 to show the
highest abundances. Moreover, in their spectra Ti23 has an abundance comparable to that of
Ti25, so we can include this cluster into the list as well. Comparing these numbers to figure 1
we find agreement for n = 13, 15, 19, 23, 25 for the CR clusters and for n = 7, 13, 15, 19,
23 for the DFTB clusters. For the DFTB clusters these stability peaks are rather small. Sakurai
et al propose icosahedral structures or other five-fold symmetries for these clusters, except for
Ti15, to which they assign a bcc structure. However, the authors did not obtain these geometries
directly from their mass spectra. In particular, the proposed bcc structure is in contrast to our
findings (cf figure 2(a)), whereas we find structural agreement for the clusters with n = 7, 13,
19. In our calculations a Ti15 cluster with bcc structure is 0.6 eV higher in energy (within the
CR description) than the structure we found, which is a doubled hexagonal bipyramid. Also
the DFTB optimization of the bcc structure results in this geometry.

Another study of the stability of titanium clusters has been published by Zhao and co-
workers [3], who found the 7- and 13-atom clusters to be magic. Also in the most recent
density-functional study on Tin clusters, by Salazar-Villanueva et al [6], these two cluster
sizes were found to be particularly stable. Compared to the stability functions in figure 1
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(a) (b) (c)

(d) (e) (f)

Figure 2. Cluster structures of (a) Ti15 (CR), (b) Ti55 (CR), Ti67 (DFTB), Ti68 (DFTB), Ti73

(DFTB), and Ti74 (DFTB).

we can confirm this only for the DFTB series. Within the empirical cluster series only Ti13 is
energetically favoured.

Figure 3 shows the radial distribution of the atoms as a function of cluster size for both
series. The radial distribution is defined as follows. For each atom of a Tin cluster, we calculate
the distance to the centre of mass, ri = |Ri − R0|, with

R0 = 1

n

n∑

i=1

Ri (3)

and Ri being the position of the i th atom. Subsequently, all these n distances per cluster
are shown as a function of cluster size n. In the size-dependent radial distribution of the CR
clusters (figure 3(a)) we can see that the radius which is approximately given by the largest
radial distance possesses an overall increase. However, at certain sizes the radius decreases
with increasing cluster size, e.g., at n = 36, 37, 44, 59, 60, 73, 83, 89. Moreover, at certain
sizes higher symmetric clusters can be identified. These show only a few different distances,
because several atoms are located at symmetrically equivalent positions. This is the case for,
e.g., n = 38, 51–55, 67, 74, 90–92.

A third feature obtained from figure 3 is the occurrence of atomic shells. From n = 10–12,
a single inner-shell atom appears. This is the inner atom of the icosahedron (n = 13) whose
second (outer) shell is built up from n = 10–13. From n = 19 onwards, the inner shell consists
of more than one atom, and the third shell appears at n = 51. The radial distances of the
different shells are well separated in the diagram and, thus, we can follow the building-up of
new shells easily.

By comparing the two diagrams in figure 3 it can be seen that the overall structure
is conserved during relaxation of the geometries with the DFTB method, because the two
diagrams look very similar. The main difference between the two series is that within the DFTB
description the clusters are slightly expanded. Furthermore, larger clusters tend to show a less
symmetric radial distribution. Thus, although the electronic degrees of freedom are important
for many details, as we shall see below, their importance is not sufficiently strong to be clearly
recognizable in figure 3.
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Figure 3. Radial distributions of the atoms as a function of cluster size of (a) the CR and (b) the
DFTB cluster series. Each horizontal line represents the distance of one specific atom to the centre
of mass. Several lines may lie on top of each other if the corresponding atoms have the same radial
distances.

In figure 4 we show the average bond length as a function of cluster size as well as the
minimum bond length in each cluster. Moreover, we compare in table 1 the average bond
lengths for some small clusters with ab initio results. For the calculation of the average bond
length we have defined bonding to take place at interatomic distances below 3.20 Å. This is
an arbitrary value that is, however, significantly larger than the titanium bulk bond length of
2.90 Å [26]. The average bond lengths for clusters with more than 70 atoms are around 2.77
and 2.85 Å for CR and DFTB clusters, respectively, and, thus, both are close to the bulk value
of 2.90 Å.

The minimum interatomic distance in each cluster is shown as the dotted curve in each
diagram of figure 4. The DFTB curve shows some strong outstanding peaks for n = 38, 46,
48, 52–55, 67, 70, 71, 73. Some of these numbers correspond to clusters with particularly high
symmetries (n = 38, 54, 55), because the minimum distance and the average bond length are
nearly the same. The symmetries can be deduced from the point groups which are presented
in table 2. The clusters below 25 atoms possess particularly high symmetries. Above 25 atoms
these high-symmetry point groups appear less often except for, e.g., Ti38 (Oh), Ti54 and Ti55

(Ih), and Ti74 (D3d). The clusters with more than 80 atoms have nearly exclusively a very low
symmetry. Table 2 also shows the point groups of the DFTB clusters explicitly, if they differ
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Figure 4. Average bond length (solid lines) and minimum bond length (dotted lines) of (a) the CR
and (b) the DFTB cluster series as functions of cluster size. The horizontal dashed lines show the
experimental value of the bond length (2.90 Å) [26].

Table 1. Average bond lengths in Å. Structural isomers are chosen from the reference studies
according to DFTB geometries (cf table 2).

n CR DFTB [2] [3] [6]

2 2.34 2.24 1.94 1.93 1.97
3 2.50 2.42 2.40 2.28 2.21
4 2.60 2.75 2.52 2.51 2.49
5 2.64 2.78 2.48 2.54 2.49
6 2.65 2.79 2.68 2.62 2.64
7 2.67 2.81 2.63 2.62 2.63
8 2.67 2.77 2.65 2.63

from the CR point groups. We can observe that one third of the investigated structures show
distortions upon geometry optimization with the DFTB method. The recent density-functional
study on Tin clusters with n � 15 by Salazar-Villanueva et al [6] predicted in general structures
of a higher symmetry than those we have found with the DFTB method.

Bauschlicher et al [7] have calculated the bond length of the Ti2 dimer in the 3�g

state (later assigned to be the ground state) [27] to be 1.97 Å, which is in agreement
with the experimental value of 1.94 Å (3�g) measured by resonant two-photon ionization
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Table 2. Point groups (marked PG) of the investigated Tin clusters. If only one point group is
stated, it refers to both the CR and DFTB clusters. Otherwise, the first point group refers to the CR,
and the second to the DFTB cluster. An asterisk marks the point groups of strongly distorted cluster
structures.

n PG n PG n PG n PG

2 D∞h 27 Cs 52 D5d 77 C1

3 D3h/C2v 28 T/C1 53 C5v 78 C1

4 Td/C3v 29 C3 54 Ih/Ih
∗ 79 Cs

5 D3h 30 Cs/C1 55 Ih/Ih
∗ 80 C2

6 Oh/D2h 31 C3 56 C3v 81 C1

7 D5h 32 D3/C1 57 Cs 82 Cs

8 D2d 33 C2/C2
∗ 58 C3v 83 Cs

9 D3h 34 Cs 59 Cs 84 C1

10 C3v 35 C2v 60 Cs/Cs
∗ 85 C1

11 C2v 36 C2 61 C2v 86 C3/C1

12 C∗
5v 37 Cs/Cs

∗ 62 C1 87 C1

13 Ih/D3d 38 Oh/Oh
∗ 63 C2v 88 C1

14 C2v 39 C5 64 Cs 89 C1

15 D6d/D2d 40 Cs/C1 65 C1 90 C1

16 D3h 41 Cs/C1 66 C1 91 C1

17 Td 42 D2/C2 67 C2v 92 T/D2

18 C2v 43 Cs 68 C1 93 C3/C1

19 D5h/C2v 44 Cs 69 C2/C2
∗ 94 C1

20 D3d/D3d
∗ 45 C2/C1 70 Cs 95 C3/C1

21 Cs 46 C2v 71 C2v 96 C1

22 D6h/C1 47 C1 72 C1 97 C1

23 D3h/C2v 48 C2v 73 Cs 98 C1

24 D3/C2 49 C3v/Cs 74 D3d/D3d
∗ 99 C1

25 C3/C1 50 Cs 75 C2 100 C1

26 C1 51 C2v 76 C1

spectroscopy [27]. The dimer bond lengths calculated with CR and DFTB are 2.33 and 2.23 Å,
respectively. Although these values are rather large, compared to the experiment or full DFT
calculations, the bulk bond length is described very well within DFTB, as we have seen above.

The Tin (CR) clusters with n = 3–13 show the same geometries as many other
clusters described by pair-potentials. They adopt the following structures: equilateral triangle,
tetrahedron, trigonal bipyramid, octahedron, pentagonal bipyramid, bicapped octahedron,
tricapped trigonal prism. The clusters with 10–12 atoms are parts of the 13-atomic icosahedron.

In the DFTB series the cluster structures are generally the same, but show small distortions.
These structures are consistent with the structures presented by Castro et al [5], Salazar-
Villanueva et al [6] (except for Ti9), Wei et al [2] (for n = 3, 4, 5, 7). The latter studies
have calculated different structural isomers for each cluster size, whereas in this work we have
taken the CR structures as a defined starting point. We have summarized the bond lengths of
these cluster structures in table 3 for comparable geometries. As mentioned above, the bond
length in the dimer is too large for both the CR and DFTB clusters. But with increasing cluster
size the CR and DFTB bond lengths approach the ab initio values.

For the icosahedral Ti13, Wang et al [4] find the distorted D3d structure to be most stable.
We observe this distortion in the DFTB series as well, but the CR cluster has of course Ih

symmetry. The bond lengths given in [4] are 2.567 and 2.699 Å (Ih isomer) and 2.580–2.695 Å
(D3d isomer). For the CR cluster we observe 2.63 and 2.77 Å and for the distorted DFTB isomer
2.72–2.87 Å. The agreement with other ab initio results is, thus, better for larger clusters than

9
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Figure 5. Similarity function spair that measures the similarity of the CR and the DFTB clusters by
comparing the interatomic distances in each cluster (defined in (4)). For two identical clusters the
similarity function will be 1 whereas for two structurally very different clusters it will approach 0.

Table 3. Bond lengths (in Å) of the two cluster series compared to the work of Castro et al [5].

n CR DFTB [5]

2 2.33 2.23 1.902
3 2.49 2.34, 2.43, 2.46 2.35, 2.35, 2.44
4 2.58 2.70, 2.78 2.48, 2.57
5 2.58, 2.73 2.76, 2.78 2.45–2.59
6 2.64 2.75–2.81 2.57–2.68
7 2.58–2.70 2.78–2.79 2.55–2.62
8 2.61–2.75 2.30–2.82 2.57–2.71

for the dimer. But despite the deviation of around 5% we can observe the distortion from Ih to
D3d symmetry.

In order to study whether the structures of the two approaches are similar or not, we define
the following similarity function spair(n): we calculate all n(n − 1)/2 interatomic distances di j

between any two atoms i and j in the two clusters with the same number of atoms, sort them,
and use

n(n − 1)

2
q2

pair =
n∑

i> j=1

(
dCR

i j

dCR
0

− dDFTB
i j

dDFTB
0

)2

(4)

to obtain the so-called pair-distribution similarity function spair(n) = (1 + qpair)
−1. Thus, two

identical clusters will result in a value of spair(n) = 1 whereas for two structurally very different
clusters the similarity function will approach 0.

In (4), the superscripts CR and DFTB indicate that the variables refer to the CR and DFTB
cluster series and d0 is the minimum bond length in the corresponding clusters. The division by
the latter assures that the function is independent of bond-length variations and only compares
the geometries.

The resulting diagram is depicted in figure 5. The curve is overall decaying. There are,
however, several peaks that indicate a particularly high similarity between the corresponding
clusters, e.g., at n = 13, 38, 46, 49, 51–55, 66, 67, 70, 71, 73 and—with slightly smaller
values—for n = 20, 43, 58, 61, 63. For these numbers the DFTB relaxation of the CR cluster
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Figure 6. The normalized difference�Iαα of largest and lowest eigenvalue of the matrix containing
the moments of inertia as a function of cluster size for (a) the CR and (b) the DFTB cluster series.
In the upper part of each panel, a simple estimate of the overall shape of the clusters is given, either
being spherical (marked with points in the lowest row), cigar shaped (points in the middle row), or
lens shaped (points in the uppermost row).

structure does not change the geometrical structure. Scaling effects are excluded, as mentioned
above. For other clusters, stronger structural deformations occur. These do not necessarily
have to involve changes of the geometry. The similarity function just shows which clusters are
less affected by the DFTB relaxation. In other words, the minima on the two potential energy
surfaces correspond, if spair = 1.

By comparing the maxima of spair with those of the stability function (cf figure 1) we
see a correspondence between stable clusters (within both series) and high similarity for most
of these structures. We can conclude that the most stable clusters are geometrically already
well described by the empirical CR potential (excluding scaling). We may also conclude that
geometrical packing effects are the major contributions to the energetics of these clusters. In
contrast, for those clusters with a low value of spair, geometrically favourable packing is difficult
to achieve and, thus, the CR and DFTB descriptions result in less similar, distorted structures.

Besides the similarity, the overall shape of the two cluster series may shed light upon the
cluster growth. Therefore, we calculate for a given n-atomic cluster the eigenvalues Iαα of
the matrix containing the moments of inertia

∑n
i=1 si ti . Herein, si and ti are the x , y, and

z coordinates of the atom i in a coordinate system centred at the centre of mass R0 (defined
in (3)). For a spherical jellium Iαα ∝ n5/3, and therefore we show in figure 6 the difference
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between the largest and the lowest eigenvalues �Iαα = |I max
αα − I min

αα |/n5/3 for each series as
a function of n. If �Iαα = 0, all three eigenvalues are identical, and the overall shape of the
cluster is approximately spherical. These clusters are marked with points in the lowest row of
the upper part of the diagrams. Spherical clusters are found for n = 13, 17, 38, 54 in both
series and, additionally, for n = 4, 6, 28, 55, 92 in the CR series. Here, we see that a distortion
towards lower symmetries (cf table 2) is caused by the DFTB relaxation.

Clusters marked with a point in the middle row of the upper part of the diagrams of figure 6
have two small eigenvalues and one large eigenvalue, i.e., they are essentially prolate (cigar
shaped). Those clusters that have one small eigenvalue and two large eigenvalues are oblate
(lens shaped) and marked with points in the uppermost row. Comparing both diagrams we see
periods of constant shapes with increasing number of atoms, especially above 20 atoms. These
constant periods are even more distinctive in the DFTB cluster series (figure 6(b)). This may
suggest that in these size ranges the clusters grow by adding atom by atom to a certain core.

In order to address this question further, i.e., whether a cluster consisting of n atoms can
be considered as resulting from a cluster with (n − 1) atoms plus an additional single atom,
we define the similarity function s1. We calculate the (n − 1)(n − 2)/2 interatomic distances
d0

i j for the cluster with (n − 1) atoms and sort them. Subsequently, we consider all possible
(n − 1)-atomic parts of the n-atomic cluster, i.e., n different parts of each (n − 1) atoms, and
also calculate and sort their interatomic distances di j . The smallest value of q1 with

(n − 1)(n − 2)

2
q2

1 =
n−1∑

i> j=1

(
d0

i j

d0
min

− di j

dmin

)2

(5)

defines the similarity function of the n-atomic cluster, s1(n) = (1 + q1)
−1. Similarly as above,

the function is 1 for a cluster that is obtained by adding a single atom to the (n − 1)-atom
cluster, and approaches 0 for very different structures.

Figure 7 shows the resulting functions for the CR and the DFTB cluster series. In general
the similarity function of the empirical clusters has values much closer to 1. This means that
the CR structures are often more related to each other than in the DFTB series. The reason is
certainly the above-mentioned structural distortion within the DFTB series. However, there are
some values of n where the function approaches 1, e.g., for n = 52–55, 71, and several clusters
with more than 80 atoms. In the DFTB series, the similarity function shows these features even
more distinct.

Finally, we will discuss the similarity between the clusters and cutouts of the bulk crystal
lattice, in order to see whether a transition to bulk structures is observable. Titanium crystallizes
in hcp structure [26] and, therefore, we define a similarity function that measures the similarity
between the clusters and an hcp cutout. This is done as follows. A sufficiently large cutout is
taken as reference and the distance of every atom to a chosen origin is calculated. Similarly, we
calculate the radial distances (ri of atom i ) in every cluster of each series and, finally, compare
both sets of distances (n distances for each Tin cluster) within

nq2
hcp =

n∑

i=1

(
ri

d0
− r hcp

i

dhcp
0

)2

(6)

where d0 is the minimal interatomic distance in both systems (as explained above) and the
superscript hcp indicates that the corresponding values are taken from the hcp cutout. Finally,
the similarity function is defined as shcp = (1 + qhcp)

−1.
Figure 8 shows the resulting curves as functions of n for both series. Furthermore, for each

series four different curves have been calculated corresponding to four different origins of the
hcp cutout. Thereby, the origin was moved from (000) to three other high-symmetry points
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Figure 7. Similarity function s1 of (a) the CR and (b) the DFTB cluster series. s1 gives the similarity
between the n-atomic cluster and one of its (n − 1)-atom parts and is defined in (5).

of the hcp unit cell (at ( 1
2 00), (0 1

6
1
4 ), and ( 1

2
1
4 0)). The resulting functions do obviously not

show significant differences. For both series the curves run parallel, but for the DFTB clusters
they lie essentially on top of each other for clusters with more than 50 atoms. Overall the CR
clusters (especially the larger ones) show a much higher similarity with the hcp fragment than
the DFTB clusters, whereas in both series there are some prominent peaks at the same cluster
sizes, e.g., for n = 67, 70, 71, 73 atoms. Here it should be remembered that the hcp structure
is a closed-packed structure and that the CR potential implicitly favours closed packing.

As we have already observed in figure 1, these four clusters are exceptionally stable in the
DFTB series. Here, we find a strong correlation between the stability and the bulk hcp structure.
Moreover, Ti67, Ti70, and Ti73 do not have a high similarity function regarding their (n − 1)-
atomic parts (cf (5) and figure 7). The most stable clusters in this size region are, therefore,
not structurally related to each other but consist of (differently centred) hcp fragments. This
can be verified by having a look at the cluster structures which are presented in figures 2(c)
and (e). The structures with n = 66, 68 (cf figure 2(d)), 69, 72, 74 (cf figure 2(f)) which show
less similarity with the hcp fragment have indeed more spherical structures. Hereby, Ti68 is
low-symmetric (C1), whereas Ti74 is of high symmetry (D3d).

Although the hcp structure seems to be energetically favoured from certain sizes onwards,
the major part of the clusters does show lower values of the similarity functions and the
structures tend to exhibit triangular faces and a clear shell structure.
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Figure 8. Similarity functions shcp quantifying the similarity of (a) the CR and (b) the DFTB
clusters with a cutout of an hcp crystal. The four curves in each panel correspond to an atom in the
hcp crystal sitting at positions (000) (solid), ( 1

2 00) (dotted), (0 1
6

1
4 ) (dashed), and ( 1

2
1
4 0) (dotted–

dashed). This function is defined in (6).

Liu et al [8] showed in an experimental study of clusters with up to 130 atoms that in this
size regime the clusters have in general no bulk structure. This is consistent with our findings as
we have found hcp bulk fragments to be stable only in a few cases. Because the surface-to-bulk
ratio is very large for clusters with fewer than 100 atoms, the transition to bulk structures will
probably first take place for much larger clusters.

Moreover, we still can find five-fold symmetry in these structures which is a remainder
from icosahedral growth. In this size regime these two growth patterns (icosahedral versus
hcp) are both present and occurring simultaneously in the same cluster.

Finally, we discuss electronic properties that have been obtained through the density-
functional calculations. Figure 9 shows the gap between highest occupied and lowest
unoccupied molecular orbital (HOMO/LUMO gap) as a function of cluster size. We show
this both for the CR structures (described by DFTB) and the fully relaxed DFTB structures.

We observe that both curves decay rapidly and approach a nearly zero band gap within the
first 20 atoms. The values of the HOMO/LUMO gap of the larger clusters above 50 atoms are
without exception below 0.03 eV. Although this is below the accuracy of our method, the strong
trend towards metallic behaviour can be seen. We add that the HOMO/LUMO gaps reported
by Salazar-Villanueva et al [6] are very similar to the present ones.
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Figure 9. HOMO/LUMO gaps of (a) the CR geometries and (b) the fully relaxed clusters of the
DFTB series as functions of cluster size.

Moreover, for n < 20 a gap opens up for some clusters due to the relaxation, a typical sign
for Jahn–Teller distortions which we observed above. The most outstanding example in this
sense is Ti8, for which the gap increases by 0.3 eV. We can see from figure 5 that this cluster
shows a strong distortion compared to the initial CR structure.

In their theoretical work, Zhao and co-workers [3] proposed that titanium clusters show
(electronic) bulk properties from Ti8 onwards. However, as they have used Gaussians (width
0.1 eV) to broaden their density of states, this may suggest an earlier closing of the gap with
increasing cluster size. But in any case, we find metallic behaviour occurring latest for clusters
between 10 and 20 atoms.

Besides the Kohn–Sham eigenvalues we have access to the Mulliken populations of the
atoms. To investigate their size dependence we make use of their radial distribution. For
Ti100—a single, but typical case—the radial distribution of the Mulliken gross populations is
presented in figure 10(a). For every single atom its radial distance is calculated and at this
specific distance a point in the diagram marks its Mulliken gross population. Comparing all
the populations to the number of valence electrons (marked as a horizontal dashed line in the
diagram) strong charge transfers within the cluster can be seen. Hereby, those atoms with small
radial distances, i.e., the inner shell atoms, have the highest populations whereas the surface
atoms (those with large distances to the origin) have the smallest populations.
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Figure 10. (a) Radial distribution of the Mulliken gross populations in Ti100. The centre of mass
is at x = 0. Each point represents the Mulliken population of a single atom, whereby the x value
gives its distance to the centre of mass. On the y axis the Mulliken gross population is marked.
(b) Mulliken populations of the atoms with largest distance to the centre of mass (solid curve) and
those with smallest distance to the centre of mass (dotted). The dashed lines in both panels mark
the number of valence electrons of a titanium atom which is four.

Ultimately, for very large clusters the central atoms should become neutral, but this limit
has clearly not been reached in the present study. We add that the variations in the atomic
charges can not be interpreted as due to Friedel oscillations. Assuming a free-electron model
with four electrons per atom, the electron-gas parameter becomes rs = 0.37 Å, leading to
Friedel oscillations with a periodicity of 0.61 Å, i.e., much smaller than the scale of the
oscillations in figure 10(a).

This trend of charge transfer from surface atoms to inner (bulk) atoms can be seen in
nearly all clusters. To visualize it we show in figure 10(b) for each cluster the Mulliken gross
population of the two atoms with largest (solid line) and smallest distance to the centre of mass
(dotted line) as a function of cluster size (i.e., for each cluster the population of an inner-shell
atom and a surface atom is given). If we neglect the clusters with fewer than 20 atoms the
surface atoms in every cluster lose electrons (there are still some exceptions in clusters with
30–40 atoms) whereas the inner atoms gain electrons. Thus, for the clusters of the present
study, the Mulliken populations of the surface atoms approach 3 with increasing cluster size
(and, thus, have a positive Mulliken charge), whereas those of the inner atoms have populations
around 5 (negative Mulliken charge).

4. Conclusions

In this study we have investigated the size-dependent properties of two continuous series of
titanium cluster structures which have been obtained by a genetic-algorithms search using
an empirical pair potential and additional density-functional tight-binding calculations of the
resulting cluster structures. Although we cannot be sure that we have found the global-
minimum structures in all cases we hope at least that the genetic-algorithms search resulted in
good approximations to them. Since it is very difficult to choose ‘good’ initial geometries for
large systems we believe that this approach is reasonable and consequential to get information
on large cluster series and their properties.

We found the highly symmetric clusters to be particularly stable within the empirical
potential. Within the DFTB series some other clusters turned out to be most stable, especially
those that showed a high similarity to bulk fragments with hcp structure. These clusters also
showed the highest similarity between the two series. We conclude therefore that they are
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geometrically well described by the empirical potential and only scaled during the DFTB
relaxation.

The size-dependent radial distribution showed a shell-building very clearly. From 10 atoms
onwards the clusters have two atomic shells; from 51 atoms onwards they consist of three shells.

The point groups show particularly high symmetries for the smaller clusters with up to
25 atoms, but large clusters with more than 80 atoms have mainly C1 symmetry. The DFTB
relaxation leads generally to a geometrical Jahn–Teller distortion.

The HOMO/LUMO gap is very small, decreases very rapidly with increasing cluster size,
and approaches a nearly zero gap at latest for clusters with 10 to 20 atoms. However, we can
just indicate a trend here, since we reach the limit of accuracy of our method. The Mulliken
populations show that electronic charge is transferred from the surface to the bulk part of the
clusters in the size range we have considered.

Finally, by comparing the results of the DFTB calculations with those of the CR
calculations, it is clear that even for a system like Tin clusters, electronic degrees of freedom
may have impacts on the energetic and structural properties that are of relevance, at least for a
detailed description of the cluster properties.

We believe that we have given some insight into the size dependence of cluster properties,
especially by the definition of the functions that we used throughout this investigation.
Furthermore, we have shown that a combination of approximate empirical potentials with
electronic-structure methods may be one way of getting information of large, but finite systems.
As we have seen, a quantum-mechanical description of these systems is indeed necessary.
Finally, we emphasize that many of the conclusions of our work were obtained through
application of various analysing tools that we have devised explicitly for this purpose.
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